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In this report we discuss adaptive phase compensatjon for tgw

effects of turbulence and thermal hlooming. Closed-loop
systems employing both outgoing-wave and return-wave control
algorithms are considered, although we have obtained from
quantitative estimates of system performance oniy for the
return wave-type of systom. On the basls of results obtained
from a comuiter simulation of such systems, w+ conclude that
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1" 20. ABSTRACT (continued)

adaptive optical systems employing a return-wave control
policy will yield only limited compensation for the effects
of cw thermal blooming unless the target has glints that gce
significantly smaller than the diffraction-limited width or
the beam. We explain this in terms of an isoplanatic effact,
in which the phase informa:ion returned from the glint is
garbled by virtue of lts finite extent. 1In contrast te the
tw thermal bLlooming results, we find that return-wave gys-
tems aro muca less gensitive to glint size for turbulence aad
mMultipulse thermal bLlcoming tompensation (70 to 304 of free-
space peak 1vradiasce reatorid typivally in the case of
turbulence compensation and o factor of two te thre: increase
ir target lrradiance in the cage ¢f multipulre therna.l blcome-
irg). Analytical ard gompute® sinvlétion resulis have also

. been obtained frnr the depence ce of Jirror Eit on the number
t ) of mirror actuators,
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SUMMARY

In this report we discuss adaptive phase compensation
for the affects of turnulence and thermal blooming. Closed-
loop systems employing bota outgoing-wave and return-wave
control algorithms are considered, although we have obtained

guantitative estimates of system performance only for the

returin wave-type of system, On the basis of results obtained

from a computer simulation of such systems, we conclude that
adaptive optical systems enploying a return-wave control
nolicy will yield only limi.ed compensation for the effects
of cw thermal blooming unlets the target hap ¢lints that zre
significantly smaller than thoe :liffraction=iimived siicdth
of the beam.  wa :n':fplmin thia 1 terms of an iuwsplansc e

effact, ir'whirch wie phasa ir foematlon returned freiv wln uint,
‘is yarhled hyn”fftqu ¢f itn tﬁnktn axtant,

In contraw. b the
cw therma) bBlcoming regalts, ve f.rd that retusn=wave ﬂfmt&mu
are much less senaitive to glint sire ‘or turbulerce and
multipulse thermal blocming compensation (70 to %0% of free-
space peak irradiance restored typically in the case of
turbulence compensation and a factor of two to three increase
in target irradiance in the case of multipulse thermal
blooming). Analytical and computer simulation results have

alsc been obtained for tne dependence of mirror fit on the
number of mirror actuators,
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I. INTRODUCTION

The principal objective of most high energy laser
systems is to achieve the maximum possible irradiance at a
dlatant target. Under ideal conditions the maxinum irrudiarce
is determined by free-space diffraction effects. 1In prastice,
_however, thie ideal state is seldom realized. We must contend

'addltlunally with wave distortions introduced by the laser

- device, by the optical train and by medium inhomogeneitius
“in the path butween the transmitter aperture and the target.
1In oaah casa th@ distortion i¥ caused larg2ly by path length
“arroxn that Lntxodu v phase aberrations, In this report,

. we uonqidal tne umprovement in beam guality attainable by
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gdaptivg opti;nl systems thot lntroduce a compensating phase
“ ldtxxbuﬁian which, tends to cancel the: errors introduced by
the phAlé anerrations. The compensating ”huse discribution
Y ?acum @ tp ba uenecated RY a currector ricror located in (
tne\up0i ‘& trising e. q;. a anmn-taﬁ dr 1o mable mirror
.AIGH‘WJ Junt beétore thq 2t put tu‘emrc%p, Purthermnore, we
g ¥l ch%rweu prtmﬂrih/vd*h cloge loob' yarom: that obtain
Cothn 4f4 Lwit. @hnla infarmation via trn uqtruy returraed from
the teluol
, “hm uzincipcl objeuthe o‘ theun stnd*mn hay bean to

detarmdﬁa the affecrﬁveneua of glosed- loop adaptive optical
syatems A0 wompewsating for the eifects of turbulence and
tharmal blooming. The effects of device distorticn and
opticél train errora were not consjdered but could easily
"be included in the furmalism developed here if the nature ot
these errors was specified (e.g., the spatial and temporal
spectrum of tie ervors).

To obtain quantitative estinates of the degree of
compansation achldvable with glosed~loop adaptive optical
systems, we have developed a computer mudel of such systems,
The model includes a servo system Bimulator, a corrector
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mirror simwilator, a propagation simulator anr a'target
simulatciz The propagation simulator utilizes a propagation
algorithm tha’ accurately models the optical distortions
introduced by atmospheric turbulence and thermal bloolning.

BHefore proceeding to the discussion of the simulation
and the resalts obtained therefrom, we discusws in Section 1I
some of the fundamontals of adaptive phase compensation for
the cffects of medium inhomogeneities, ' This is followed in
Section 111 by a dismcussion of the details of the computer
simulaticn that has been developed on thimw contract. Results
obtained from the cumputer simulation and from analysis are
than given in Section IV, The conclusions that we have
reached hased cn this work and our recommnendations for
additional work or the computes similation of closed-loop
adaptivs optical swystems are discussed in Section V.
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11, ,’,, FUNDAMENTALS OF ADAPFTIVE COMPENSATION FOR
. MEDIUM LNHOMOGLNEITLLES

/

s

/ In this section we dizcuss the Lasic principles ard
fundamental limitations of :wo:Lroad classes of adaptive optical
techniques for compensating ¢y medi.um inhomogeneli tieas caused by
thermal blooning and turbulence. ‘The two classes of techniques

to be considered are (1) return-wave algorithms in which the

phase corrections ara determined from direct measurements of

the returned finld (e.g., the phase conjugate tachnique) or

by a maximization of some functional of the irradiance '
distrib.atiop obtainad by imaging the target (e.g., maximization

of the eneryy through a pinhole for a point glint target or

7/

maximizing the 'sharpness" of an image of an extended target)
and (2) outgoing-wave multidither algorithms in which the phase

5' corrections arr deturmined by maximizing the inteyrated <
” irradiance of the field ruflected from the target and inter- o
cupted by a dotector located in the vicinity of tha tvansmtiar E
(a.a, the sinunmidal multidither tochnigue tsed u she )R- o 3

wlemet gxXovrimoatal COAT nystam construete. by PRLI, 1o %
LOMEsa L LIC Fhose tecsinic.aes e wil. assums that L ho ne.a st vy
system respords instantancebusly t» c¢hanges i1 10 stu}e;of %
the medium caused by thermal blooming and turbulence, In ‘ : oo
effect, this assumption linearizes the propagation phenomenon - %
since we then do not have to be concerned with the local ;
effect (in time) of the phase correction on the medium. This '
idealization should apply as lony as the response time of the
adaptive system is short compared to the time constants for
the thermal blooming.

For each class of technigque we are interested in deter-
mining the effect of the phase corrections on the field at
the target. This field <an be derived, in general, from a
scalar function u which satisfies the relation

u(x") = /dﬁf ug (") G(x",x") (2.1)

BRI - = 1173 (AN ARG T o s RS S C R Tt FIRedE TR R s AT A IR SO AT A AL TN
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where u_ is the fiald at the transmitter aperture and G is

the Green's function for the inhomogeneocus medium; i.e.,
G(g“,g?) is a scalar function from which we can derive the
fiaeld at x* excited by a point -vurce located at x“. It
follows from Eq.%z.l) that the field at a point x caused by the
reflection of the transmitted wave from a puint target at ¥
is

uatg) = G(x,x*) erz“u.(ﬁ‘) G(x,x") (2.2)
Likewise, the field at x caused by the reflestion of the
transmitted wave from an extendad targep,ﬁivinq tha conplex
reflectivity function p(x*) is ’

ug (x) = /dy_" o (X*) G(X,%") /d;f uy (X*) G(X* %*) (2.3)

Equations (2.2) and (2.3) are the fundamental rqlations upen whish
wa shull base the discuswsion of the two clusses ! adaptive
vompentiation techunigues. ‘ '

{ \

2.1 Retarnedave Algdr! shug 1

Al ritu&n-wavm.ﬁiqcrirhmm have tae proporty that the
phase cvrre$tion applied te the transmitted wave is the
conjuyate o¥ the phuse of the field returned from the target.
This Lf true not only for the explicit phase conjugate technique
but also for the case in which a functional of the irradiance
distribution obtained by imaging the target is maximized.

Muller and Buffington have proved thig for an incoherent imaging
system that maximizes the "sharpness" of an image of an extended
tarqat.l It is alseo easily proved for a coherent system that

maximizes the energy from a point glint target through a

pinhole in the imaye plane of a receiviny aperture., In this
case the field at the receiving aperture is proportional to
G(x,Xx") which can be expressed in the form



[ o TR GRPT SEE TTTR
———

hnd we note that since A is positive the maximum value of

Glrox) = AlgX) exp (1o (x,%%)) Gy lxx") (2.4)
where G, is the free space Green's function and A and ¢ are

the amplitude and phase variations caused by the medium

inhomogeneities, After the introduction of a compensating

phase distribution ¢c(§) in the aperture plane, the field in
the image plane of a lens used to image the point X* is

uimage(?ﬁ )y = [dii A(x,x*) _Exp[i(cb(?_&_,?j“) + ¢c(§_))]-

X o« X
exp\~i k —p—= 12.5)

where £ is the distance from the aperture plane to the image
piane of t+he lens.

Hence the irradiance through a pinhole
located at x, = 0 is ‘

v

. n "’ » A : A 2
' Tinage!® Udgg,m_g,p oxp [t (b (xx) + %(5_))]] -

'

‘Iiﬁage-ia attained under ¢, = =t i.e., when the compensating

_phage distribution is the conjugate of the atmospheric phase
distortions.

Ancther important general property of return-wave
algerithmg is that they &re based on the fact that Green's
funct.ion G(x,x”) satisfies the reciprocity relation

(see
Appendix A for a discussion of reciprocity)

Glx/x") = G(x",x) {(2.7)

which means that the field observed at a point x from a source

at a point x* is the same as thoe fleld »bserved at x* from

a source at x. Equation (2.7) appliesg aven though the intervening

gpace betwzen x and x* is inhomogenecus, The only restricticn

is that we assume that the propagation is linear, which it
is under the assumption we have made.
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Let us now consider the effect of introducing as a
phase correction the conjugate of the phase of the field
returned from the target. For a point target we note from
Eq. (2.2) that the returned field is propertional to G(x,X”)

. L and thus that the phase correction applied by a return-wave
' ' system is - (x,x”). The field at the target is then given by

K;-_.:' , o u(x’) = fdx‘ ug (%) axp(—iMﬁ‘,g:_“)) G(x",x")

L s

a/'dgc_‘ us'(y_‘.) A(x" %) Go(gt,‘f.gc_‘) ' (2.8)

where we have used Eq, (2.4) to express G in terms of A,¢ and

the free space Green's function G, ¥nd have used the reciprocity

relation given inEq. (2.7) to e2liminate the phase texrms ¢(x",X")
" and ¢(§“r§_‘) ¢ 1.2, . o '

s TALTE T A
R R Y I SR B O

- (x", %) + ¢i§”,§‘) =0, (2.9)

e 2 ]

The result inEq. (2.8) indicates that return-wave algorithms - 1
yield yood compensation in the case of point glint targets 3
as long as the amplitude factor A doea not vary significantly '
acrost the transmitting aperture. Appreciable variation in A
acrogs the aperture will lead to an effective apodization of
: the aperture and will tend to increase the sidelobe level

E and the beamwidth of the transmitted energy.

: For an extended target the return field is given in
Eq. (2.3), which we repeat here for convenience

o LA TR 7

i il AL . A S

g TP
a3

ey

(2.3)
If the target reflectivity function is simply a collection of
zero width glints located over an extended region, it can be
shown that the previous point target analysis applies and we
conclude that a return-wave system will yield good compensation
for such targets as long as the amplitude factor A does not

up (X) = / ax” p(x") G(i,ﬁy)./~d§‘ ug (x”) G
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vary too much. More realistically, however, the target glints
have finite extent and the previous analysis does not apply.
For example, consider the case where there is a single glint of
finite extent. Moreover, let us assume that the range of p(x")
is small compared to that of the incident field from the trans-
mitter. In this case the return field can be approximated by

g (x) " (/ dax” o (x") 6(5,5")) (/ dx” ug(x”) G(ﬁ;_&')) (2,10)

where x_ is the point where the reflectivity function p(X")
has its maximum value. Hence, a return-wave algorithm will

apply as a correction the conjugate of the phase of the factor

S e bt i e e

[ ax” o(x™) Glx,x") (2.11)

which is a weighted average of the Green's function over the
domain of the reflectivity function #(x”). This phase correction
policy will yield good compensation only if the phase of G(x,X")
does not vary appreciably over the range of i, Otherwise, the
conjugate phase is garbled by the interference between the
returns from the difierent parts of the domain of w(x”). The
regative of the phase of the factor in Eq. (2.11) will then

not exactly cancel the phase ®(x ,x") of G(x ,x") and the

: compensation will be degraded. An example of this type of

3 problem is provided by a similar situation in adaptive imaging

Z through inhomogeneous media. It is well known that good
compensated imaging can be obtained only if the object lies
within an isoplanatic region, which has the property that the
phase distortion ¢ (x,x”) introduced on a point source field
radiated from a point x” on the object to a point % in the 1
receiving aperture is nearly the same for points x™ within
this region.

YT T I

The importance of the isoplanatic problem in return-
wave adaptive compensation systems wlll depend largely on the
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nature of the target reflectivity function and on the source
of the medium inhomogeneity. 1In our computer simulations of
phase conjugate compensation for the effects of thermal
blooming we have agsumed that the target glints extend over an
area approximately equal to the diffraction-limited size of
the transmitted beam. Under these conditions, we have found
that the compensation achieved tends to be disappointingly
small and we attribute this to the above discussed isoplanatic
problem. Numerical problems associated with the attandant
widéfanqle scattering have prevented us thus far from simulating
glints that are significantly smaller than the diffraction-

‘limited apot.

B For turbulence compensation problems we can readily
estimate the size of the isoplanatic region. 1Its linear extent
Diao is roughly equal tn the distance between two points on
the target at which the mean square difference in the vhase of
a point source field radiated from a point x in the transmitter
aperture'iu unity. Assuming Kolmogorov turbulence, we obtain

the relation

T 2 a2 4-3/5
Digg ™ (1+1 kS Cf £) (2.12)

where C: is the index structure constant, k is the wavenumber
21/x and £ 18 the distance to the target. In the computer
simulations of phase conjugate compensation for the effects
of turbulence, we have generally obtained good correction
with ylints that extend over a diffraction-limited spot area.
This is conaistent with the fact that the isoplanatic region
assoclated with the turbulent inhomogeneities was larger

than the diffraction-limited spot in these runs. For instance,
the diameter of the diffraction-limited spot obtained with

a 70 cm, 10.6 um laser beam focussed at a range of 2 km is
approximately 3 cm (fA/D), whereas the diameter of the
isoplanatic region obtained from Eq. (2.12) is in the range

6 - D

L Digy = 28 cm for the range of index structure constant
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values used in the simulations (5 x 10”36 cm™2/3 . ¢

.
- - - "N
6 x 10 15 cm 2/3).

<

2,2 Outgoing-Wave Multidither Algorithms

Outgoing-wave multidither algorithms adjust the phase of
the transmitted wave to maximize the irradiance of the field
reflected from the target. To accomplish this, the phase of
the transmitted field is dithered in a diatinct set of
spatial-temporal modes. The resulting modulations on the
irradiance of the tield reflected from the target are then
detected and sent to a servo system that tends to set the
corrector mirror actuators so as to drive the modulations to
zero. In doing so, the servo system sets the actuators in
the positions where the derivatives of the detected signal
with respect to the phase correction are zero, which is the
condition for a maximum (the fact that it is a maximum and
not a minimum can be determined by the phase of the signal).

The detector current in an outgoing-wave multidither
system is proportional to integral I of the irradiance of the
field up reflected from the target. For a point target, we
obtain from Eg. (2.2)

I =c [ dx [G(x,x") |2 (2.13)

whaere c i8 the irradiance of the transmitted field at the
target

c = |/ ax’ uy(x") Glx,x)|? (2.14)

Note that the integral in Eg. (2.13) does not depend on tae
transmitter field ug. Hence, a maximization of I with respect
to the transmitter phase yields maximum irradiance at the

target, as desired.
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For extended targets the reflected field is given by
Eg. (2.13). As in the case of return-wave algorithms, the above
point target analysis applies if the target reflectivity
function is simply a collection of zero width glints located
over an extended region (with the difference that the receiver
detector must now also be extended in order to achieve the
desired maximization of the irradiance of the target). As
an example of an extended target, we ghall consider the cases
discugsed in the return-wave algorithm discussion of Section
2.1y viz,, a single glint of finite extent for which the range
of the reflectivity function p(x*) is small compared to that
of the incident field from the transmitter. In this cs»se the
return field can be expressed in the form given in Eq. (10)
and the corresponding expression for thae integrated if}adiance
returned from the target becomes

I woc [ dx | dx" o(x*) Gix,x) |2 (2.15)

where ¢ {8 again the irradiance of the transmitted field at the
target, Although the field returned from the extended glint
differs from that retui'ned from the point glint, we note from
Eq.(2.15) that a maximization of I again leads to a maximization
of the irradiance at tho target. As in the point target case,
this occure because the integral over X in Eqg. (2.15) does not
depend on the transmitter field Ug s

The above analysis indicates that, in contrast to
return-wave algorithms, outgoing-wave multidither algorithms
are relatively ingensitive to target glint size. Of course,
this is true only up to a point., If the range of the glint
reflectivity function p(x”) is large compared to that of the
fleld incident from the transmitter, the return field is
approximately given by

U (X) = o(x3) [ dX* G(x,%") [ dx” u (') G(X*,x°), (2.16)
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and the inteygrated irradiance returned from the target
becomes

I= o) [ ax | ax” o(x,x) [ ax ug(x”) Glx*,x*) |2

, (2.17)
Hence, in this case an outgoing=wave multidither syntem
maximizes a complicated functional of the transmitter irradi-
ance at the target instead of the transmitter irradiance
itself and we should not expect to achieve good compensation
(this behavior has been observed experimentally with the

HRL lB8-element multidicher COAT system).

In summary, the results of this section and those of
Section 2.1 indicate that: (l) both return-wave and cutgoing-
wave (multidither) phase compenaation algorithms should yield
good compensation for medium ilnhomogeneities for point glint
targets; (2) return-wave algorithms are much more sensitive
to glint size than outgoing-wave algorithma, especially in
the cane of thermal blooming compensation; and (3) when the
slze of the target glints significantly exceeds the size of
the diffraction=limited focal spot of the transmitted field
at the taryet, we do not expaect the outgoing-wave multidither
algorithm to work,

11
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Tit., ADAPTIVE OPTICAL SYSTEM STMULATION

3. 1 Organlzation and Approach

The essential clements of the adaptive optics computer
simulation are indicated in Fig. 3.1. The simulation contains
computer routines that model the operation of an adaptive
optical system congsisting of a servo system and a corrector
mirror. The effect of the atmospherae on the resulting laser
beam propagation is modelad by a time-dependent propagation ;
code that treats the effects of both turbulence and thermal ;
blooming. The simulation models a closed-loop adaptive system
in which the control intormation is provided by the detection
of a roturn=wave reflected from the target. Propagation on the

return path is modeled by a time-dependent linear propagation
code, which includes the effects of the inhomogeneities
causad by turbulence and the absorptive heating introduced

by the high=power tranamitted wave, The nature and current
status of the various parts of the sinulation are discussed
in Sections 3.2 to 3.6,

i

As indlcated abuve, we use a time=-dependent propagation

c¢ode t» model the laser propagation on the outqgoing and return
paths. This differs from the approach taken by Herrmann and d

Bradley of Lincoln Labaratory who have used a oW code in

their phasc compensation studicsg It is admittedly true that j
the use of a time-~dependent. propagation codo greatly increases i
the complexity and cost of the caleculation but we have felt

compelled to use this approach for two readgons, First, the

time-dependent approach ie cleser to the physics of the stri=-

ation that we are trying to simulate since we are primarily

intercgted in adaptive optical systems that respond in a time

gshort compared to tho time it takes the atmosphere to change,

Such adaptive systems perform an csscntially 1nstantannous deter=
mination of the required phasce front. Morcvover, the detormination

Preceding page hiank
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i8 continuously updated as the medium changes, rather tharn to

be put in und held fixed until a steady state is reached, as

is implicitly assumed whan a cw propagation code is used.

The distinction between the time-dependent and cw approaches

is especially important for the simulation of adaptive systems
that employ return-wave algorithms. Whereas it can be argued
that a cw code in conjunction with a maximization routine

closely models the behavior of an adaptive optical system
employing an outgoing-wave multidither algorithm, it does not
appear possible to model return-wave systems with the cw approach
_ since such syastems do not explicitly maximize the irradiance on

E the target. Instead, as discussed in Section 2.1, they c¢ontinu=-
ously sect the phase of the transmitted wave equal to the conjugate
of the phase of the field returned from the target. There does
not appear to be any reanson to expect that the final state
reached by such a system can be obtained from a cw ealculation

or a sequence of such calculations.

TR ST AR ST AT
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The other reason for the use of a time=-dependent propa-
gation code in our studies is the deaire to follow the time
A development of the correction process, especially in the case
- of adaptive systems emploving outgoing=-wave multidither control
algorithms. As discussed in Section 2.2, an outgoing-wave
multidither control system attempts to maximize the irradiance
at the target at each instant. We wish to know if this

instantaneous maximum countrol policy leads to a global maximum 1

T T T R T

in the thermal blooming correction problem or, instead, ylelds 3
a secondary maximum, This can be determined by comparing the
; maximum obtained with the time-dependent and the cw codes

because the cw approach yields the global maximum,

The time-dependent propagation algorithm used in the

—y—T

simulation is basically a multi-pulse code in which the laser
eneryy is propagated in a series of short pulses. The pulse

length is assumed short enough that no heating occurs during
the pulse. Furthermore, it is assumed that the heating
caused by a pulse has reached a steady state by the time the

15
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next pulse arrives. The term :steady state ig used here in the
sense that all density gradients traveling at the sound velocity
are assumed to have left the region wgcupied by the laser beam
by the time the next pulse arrives. The only gradients present
are those that are convected with the local crosswind velocity.
Each. pulse "sees" the medium created by the steady state heating
of all previous pulses but is unaffected by its own heating.

This model allows us to simulate either pulsed or cw propagation,

depending on the time between pulses relative to the time it
takes an air parcel to traverse the beam. CW propagation
conditions are simulated by allowing significant overlap between
the regions heated by successive pulses.

The time sequence of events in the simulation ias shown
in Fi1g. 3.2. First, a high-power pulse of laser energy is
propagated to the target and the resulting change in the
density of the air in the region occupied by the beam is
calculated, taking into account the convective effect of the
local crosswind velocity. It is assumed that the adaptive
phase compensation is applied just prior to the firing of the
next high-power laser pulse. Moreover, we are presently
assuming that the adaptive optical system has infinite band-
width mso that it is able to determine and apply the phase
correction instantanecusly without any delay or “ime-averaging
effects. The information required to determine the phase
correction is obtained by transmitting a low-power reference
pulse to the target and reflecting the same from the target.
This reference pulse propagates through the medium that will
be seen by the next high-power pulse and thus provides the
necessary phase correction information. This process is then
repeated for each subseguent high-power pulse,

With the exception of some runs in which the effect
of the atmosphere was represented by a single phase screen
in front of the transmittar, all of the data that have obtained
to this date apply to the simulation of adaptive systems
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utilizing a return-wave control algorithm, i.e., systems that
correct by inserting the conjugate of the phase of the wave
returned from the target. The reason for thisg concentration
on the phase conjugate simulation is simply that such simu-
lations are significantly easier to implement and less costly
to run than outgoing-wave simulations. The simulation of
a return-wave system requires simply that we transmit a
single low-power reference wave to the target and a single
low=-power reflected wave back to the transmitter aperture.
The phase correction is then equated to the conjugate of the
rhase of the reflected field., 1In contrast, an accurate
multidither simulation requires the sending and receiving of
many low-power reference pulses for each high-power pulse.
We must sample the modulations of the integrated irradiance
of the target returns at a rate set by the highest dither
frequency, For example, it was found in our earlier multi-
dither servo system simulations that a sampling time increment
of 5 usec i8 required for an l8-channel system having an
upper dither frequency of 32 kHz and an overall convergence
time of 1 ma.3 Hence, approximately 200 samples/convcrience
time were reguired in those simulations. It was practical
to take 200 samples/convergence time in the earlier work
because of the simplicity of the propsgation model that was
uged. In the present case, however, the propagation model
is yuite complicated and relatively costly to run and thus
it is clearly not practical to do an equivalent simulation.
At the outset of this contract we had planned to
circumvent the multidither simulation problem as follows:
(1) propayate a low-power reference pulse to the target;
(2) propagate the associated low=-power pulse reflected from
the target back to the transmitter aperture; (3) use the
calculated return wave to estimate the Green's function of
the medium; (4) dither the phase of the reference pulse and
calculate the resulting variations in the irradiance received




from the target, utilizing the Green's function information

obtained previously (i.e., we did not plan to use the full
. propagation simulation every dither cycle, but rather intended
to do this only once per high-power pulse); and (5) process
the variations in received irradiance in a multidither servo
simulator to determine the mirror actuator settings. During
the course nf the work on this contract, it became apparent,
however, that such a simulation is an empty exerciee beciuse
it dves not simulate the desired behavior of an actual outgoing- '
wave multidither system in a thermal blooming situation. The i
problem is that the assumption that the Green's fun.tion can ‘
be determined from the return field reflectad from the target 3
is not valid in the thermal blooming problem unless the
target is extremely small, in fact, unless it is nearly a
point target. But it can be shown from the analysis in
Section Il that outgoing=wave multidither and return-wave
adaptive optical systems both put in the conjugate phase when i
the target is a point target. Therefore, the simplified
approach to multidither ocutlined above elther yields results
eguivalent to those obtained with a return-wave algorithm .
r (point glint) or yields results that are patently incorract '
5 (extended glint).
3 We now think that the best way to simulate outgoing
! multidither adaptive systems is to use a functicn maximization
: routine in conlunction with the time-dependent propagation
code. This is a modified version of the approach used by
Herrmann and Bradley in their phase compensation studies.
They have used a function max.mization routine in conjunction _
with a cw propagation code. We recommend the uge of a time=- f
‘ dependent code because it will allow us to determine directly '
whether or not the outgoing-wave multidither algorithm yields
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a truly global maximum and not just a secondary maximum.




3.2 Contrgl System Simulation

As diarussed in Section 3.1, we have primarily used a
‘ _ phasu conjuqate control policy in the computer studies of
o ' thermal blooming and turbulence compensation performed on
: ' " this contract. Moreover, the phase conjugdate control slgorithm
that we have used is particularly aiﬁple ir that wa have
simply ¢quated the phase of the transmitted wave to the conjugate

YA J& . - of the phase of the wave returned from the target on a mesh
: point by mesh point hagis. We have not taken into account
£ _ the effect of the finite area of the phase detector and

detector noise in these studies because we wished to nmtablish
an upper limlt on the amount of correction that is achievable
with a phage conjugate vontrol algorithm and toc avoid the
problem of determining whether the particular detector configu-
ration umsed is the optimum choice, For example, there is the
question of how large to make the detectors, Should we use a
collection of small point detectors or should we upe larger
detectors that yicld spatially averaged phase eatimators? The
refinements in our present approach necegsary to account for
these effects are discussed below.

The phase detactor con be represented as a finite
aperture heterndyne detector. which performs a coherent
summation of the return-wave field over the detector aperture,
followed by a device that determines the phase of the detector
output. The detector output is

hperture

i

LO(X) noise

where ¢ 18 a constant, Up ig the field returned from the

Lo is the local oscillator field, and inoiee is a
shot noise current. Note that even in the absence of noise,
a finite detector does not yield an exact measure of the

L el e e i

target, u
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phase of the return-wave field but rather gives an average
value determined by the integral in Eq. (3.1). The phase of
the detector output is

AN ain¢N
t‘M’s\"' R, cosd
6. . = tan"* s § (3.2)
det Ay con¢N '
1+
Ag cou$s
where
B J[dg up (%) u;0(§) E Ag exp(i ¢4) (3.3)
aperture
looime ™ Ay exp(i #\) (3.4)

For shot nolse-limited detection, the noise current in Eq.
(3.4) is a gaussian random procese and thus can be simulated
by a gaussian random number genevator, The mean square
magnitude of these numbers is detvrmined by the detector
signal-to=-noise ratio S/N
a2 = ads/m L (3.5)
For each return wave a finite set of phase samples
can be determined from the relations given in Eqs. (3.2) through
(3.5), The conjugute of thrse vamples can then be used ag
inputs to the mirror simulator discussed in Section 3.3. The
resulting phase-corrected wave is then transmitted to the
target and a new return weve calculated. For point targets,
the necessary phase correction is established by a single
calculation of this type. Our experience indicates that this
transmit-~return wave calculation must be iterated four to five
times in order to achieve convergence on a complex target,
i.e., a target having more than one glint.
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With regard to the question of how to simulate outgoing-
wave multidither control algorithms we recommend, as mentioned
in Section 3.1, that a function maximization routine be used
in conjunction with a time-dependent propagation code (see
Fig, 3.3 . The basis of this approach is the fact that an
outgoing-wave multidither algorithm is a maximization process.
It attempts to maximize the integrated irradiance of the field
returned from the target. Hence the detector in Fig. 3,3 is
represented in the wimulation by an integration of the return
irradiance over an area equal to that of the receiver being
modeled. The meximization can be done with respect to any
desired set of parameters that describe the state of the
corrector mirror, e.g., the actuator position, the coefficients
of a set of orthogonal polynomial such as Zernike functions, or
the coefficients of some predicted Bet of correction functions
(such as parabolic refocus adjustment plus a variable percentage
of the phase distortion introduced in the first propagation
step as implemented by Bradley and Herrmann).

3.3 Mirror Simulatainn

We have developed simulations of both segmented and
de ‘ormable mirrors. The segmented mirror simulation is a
relatively trivial exercise in that it simply consists in
dividing the mirror mesh into a set of square-shaped zones
within an outer circular boundary (see Fig. 3.4). The phase
within each zone is assumed to be constant; i.e., the mirror
consists of a "set of flat segments.

In the deformable mirror simulation, it is assumed
that the mirror is driven by actuators equi-spaced on a square
array of mesh points. The fundamental problem is to find a
relatively simpie, low~cost method for calculating the mirror
profile resulting from an arbitrary set of actuator displace-
ments. It is not practical to use a sophisticated simulation

_—
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such a8 the NASTRAN code in these studies. Instead, we have
simplified the problem by assuring thut thin plate theory is
applicable, and that linear superposition holds., It is also
assumad that the connection to the mirror from each actuator
is effacted at a single point (i.e,, the actuators have zero
width at the point of contact with the mirror) and that pure
thrust without torque is transmitted, With these assumptions,
the problem reduces to finding the mirror profile resulting
when one actuator is raisaed unit height with all of the
surrounding actuators held fixed at zero height. This is
referred to as the unit profile. The total mirror profile at
any instant is calculated by summing a set of unit profiles,
each centered at one of the actuators and each weighted by
the height of its associated actuator,

The detailed form of the unit profile depends on the
actuator configuration. We have calculated unit profiles for
deformable mirrors having 37, 57, and 97 actuators. 1In each
case the unit profile is calculated as follows. First, we
consider the mirror profile that results from the displacement
of a single actuator at the center of a thin plate which is
constrained only at a circular edge whose radius is large
compared with the extent of the reglion occupied by the mirror.
No other actuator constrainta are assumed at this stage. We
determine the profile from the following relation obtained
from thin plate theory4

2 a
1“ 'E (306)

displacement « S(a2 - rz) - 4r
where a is8 the distance to the edge of the plate and r is
the distance from the central actuator to the point at which
the displacement is measured.
For the profile in Eg., (3.6) the height at adjacent
actuator positions is hot zero when the central actuator is
displaced. To determine the unit profile, we sum the

25
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contributions to the total heiyht at a given actuator position
from that actuator and all surrounding actuators. The height
of each of the unconstrained actuator displacements is taken
as an unknown coefficient in a set of simultaneous equations
which are solved on the basis that the total height should be
unity at the central actuator and rero at the surrounding
actuators. Having determined the unconstrained actuator
heighta required to give the desired constraint that the net
displacement is zero at each of the actuators except for the
central one, where it is unity, wo use Egq. (3.6) to determine
the unit profile at all intervening mesh points.

I1f the profile is used in the form determined above,
no additional adjustments need be made, For convenience,
however, we have truncated these profiles along squarc
boundaries. Hence, wa slightly adjust the resulting profile
to ensure that it satisfiea the condition that if all actuators
are displaced at unit helght, the mirror surface is also at
unit hejght everywhere. The unit profile obtained for a
57-actuator mirror is given in Pig. 3.5. The unit profiles
obtained for the 37- and 97-actuators mirrors have the same
general characteristics, viz., a monotonic decrease to zero
at the nearest neighbor actuators and negative values in the
space betwecn these neighboring actuators and the next set
of actuators,

The actuator configurations utilized in the aimulations
are shown in Figs. 3.6, 3.7 and 3.8, Note that extra actuators
are placed around the periphery of the mirror. These actu-
ators are uged to Bimulate a mirror having an unconstrained
edgye, They tend to Bmooth the transition between the region
occupied by the actuators and that which is beyond.




‘0

‘0
0
{0C00°)
1S00°~
GS00 "=
(0000°)
0<0% " -
€00 -
(0006 )
"0
"0

‘0

- (s39)yoexq 943z Aq pajousap suorirsod iojenioe) Iojenioe 1ad

tod S9W JUTU YITM IOIITW STqemIOIIP ‘Iojenide-yg e 103 3[13cid 3tTun -6-¢ -b13

"0 0 (0000") 1SGO0°- 0S00°- (0000-) 0S00°- T1€00-- (0000-) -0 -0 -0

‘0 6£00°- €910°- 1IZ0°- 050 - I€90°- 06£0°- [{I0°- €910°- 6{00°- ‘0 0
6L00°~ LSI0°— 1I8IN" - 6970°- <%L%0°- LT90°- %Iv¥0~-- 690 - 1810 - IST0°- 61/00°- 0
€910~ .Lwﬁo-l {(0000°) <Zec0" €0 (0000°) *7t0~ €620 (0000°) 1810°- <910°- (0000°)
LLTN°- 6970°- t620° 81C¢1°" B8 veEE - Bt8C” 8IS - €6L0° 6970°- [f170°- 1I€00°-
06£0° - %90 - %Z£0" 8YBZ” 6C8¢C " 98€ .- 568C" 8Y8C" vto- vr50°— 06£0°— 0S00°-
1€%0°— (790 - (0000} <wELE~ 98tL- (0D00-1) 98t.L" veEe- (0000°) 090 - 10— (0000°)
06£0°— %L%0°— %It0~ 8¥8c” 658S - 98€L" (1919 848" *C€0- YL%Q°- C6€0° - 0SC0™-
LL0°- 69I0°- t6Z0° 8LCT” 898" 7tee 8v8C” 1 YA £60° 6970°- f1T6G°— 1%00°-
€910°- 1810°- (00OD") t6L0° vZED- (DDDD") YCtO0- £620- (0000°) 18107 - <910°- (00007)
6200°— IST0°- 1IBI0°- 69C0°- HL%0°"- [I90 - FL%0°— 6920°- 1810 - (€I - 64207 - Yy

‘0 6{00°- S910°- LIZ0°- O06t0°- Tt%0"— O6£0" - 1L0° - <910 - 6007 "0 ‘0

‘0 "0 (0000°) 1S00°- 0SO00 - (0000°) O0S00 - 1IS00°- (0000°) "0 "0 Y

27




% [
¢
;_ |
i O O O ©0
f O /0 O O\O
, O /0 O O o\o
; O O O O ©
1 Of © 0 0 0 lo
© O O 0 © :
A O O © O 0O o
‘ © 0 0 0 © :
ONO O O 0o/0 E
o Q_O0/0 3
O O O o

3
]
4

Fig. 3.6. Actuator configuration used in
37-actuator deformable mirror
simulation (37 actuators, 20
dummies, 13 mesh points per

3 actuator.

e i eaa Eoadn R it

28

o A e \.p.‘.‘.agm“mmA_M




OOO a@wed -2
: o/o 0 0lo
? gﬁ%oooo
] OO0 000 0DO0lo
: 00000000000
E Ol0ooo00000O0|0
OO CO0O0000 0|0
f Olo 0000000
; Olo 0 0 0 o0
j 0|0 © 0[O
oNoNe)
3 Fig, 3.7. Actuator configuration used in
? simuiation (35 cerable mirrer
\ dummies, 9 mesh points per

actuateor),

%

29




4294-y

ek ek ettt et T 5 M TS -

Actuator configuration used in
97-actuator deformable mirror
gimulation (97 actuators, 32
dummies, 5 mesh points per

b

o

2

]

3

ES)

U

Qg
@
o)

o

-4
B,

A+ e =

o
™




3.4 Propagation Simulation

3.4.1 Formulation — The field of a high~power laser
beam propagating through a turbulent atmosphere can be
derived from a scalar functicn u(x) that satisfies the
equation

X
u+ k2(n?x,0-1) u = - =Y (3.7)

3%
where v: is the transverse Laplacian az/axz + az/ayz, k is
the wavenumber 2n/), and n(x,t) is the refractive index of
the medium. 1n writing Eq. (3.7), we have assumed that {he
nominal direction of propagation is along the z axis of an
X,y,2 coordlnate system. At laser wavelengths the function
u(g,t) varies much more rapidly transverse to the direction
of propagation than it does along the direction of propa=-
gation. This enables us to make the paraxial approximation
wherein the term on the right side of Eq. (3.7) is neglected.
We then have

pak 38 w2 g v k3 (n?xe0-1) u =0 (4.8)
For given initial data, il.e., values of the field at
points in the aperture of the laser transmitter (or on the
target), the propagation simulator must generate the corres=
pondiny field values at the target (or in the receiving
aperture) such that Fyg., (3.8) is satisfied. To do this, we
divide the medium into slabs defined by planes on which 2z is

congtant. In qoing from one slab to the next, we write u(x)
in the form

uix,k) = exp(I(x,t)) wix,t) (3.9)

where | (x,t) is8 a phage function associated with the medium
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inhomogeneities between z-Az/2 and z+hz/2

ik cz+02/2
2 /z-Az/Z

Pix,t) = dz*(n? (x,y,2",t)-1) (3.10)

The complex amplitude w(x) then satisfies the equation

1 2k f% + exp(=-T) V; exp(F)l w =0 (3.11)
with the initial condition
wlX,y,2,t) = ui{x,y,2,t) {3,12)

Physically, these equations apwroximate the propagation in
the inhomogeneous medium by a two=-step process at each 2
increment. First, we propagate the field u(x,t) at z-Az/2
to z+)2/2, arsuming that the intervening space is homogeneous.
The effect of the inhomogeneities batween z-Az/2 and z+Az/2
is then accounted for by multiplying this solution by the
phase factor exp(l).

3.4.2 Converging Coordinate Transformation = To reduce
the size of the mesh required to solve Edq. (3.11) numerically,
we use converging coordinates defined by the transformatior

R/
1% Ny (3.13)
}’/I:O
,"2 = Nm (3.14)
1/2
2 . 2
N(z) = o"1/2 (.1 - %) P 2 (3.15)
kpo
(L+p) &
f, = tan-l ~--~r7é‘g - 1] {3.16)
It
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gl/2 = ;fi (3.17)
o]

where Po is a characteristic dimension of the laser bearn at
the transmitter (e.g., the e-folding radius of a gaussian
beam), £ is the distance to the focus, and « is a constant
determined by the regquirement that the solution be confined
within the boundaries of the meah at the focal plane. 1In the
absence of thermal blooming and turbulence, the choice u = 1
yields a coordinate system that converges at a rate determined
by the free-space diffraction of a gaussian beam having an
e=-folding radius Py With turbulence and tharmal blooming
effects presant, we typically choouse 4 in the range 1.5 to
3.0, depending on the amount of additional apreading induced
by these affacts.

When written in terms of the converging coordinnte
variables defined above, Eqs. (3.9) and (3.1l1) for the complex
amplitude are replaced by the relations

wir,y,rz,t) = 5(g,5) expll) vig, 4, t) (3.18)

&(g.&) = (“1/2 N(z))'l exp I% (ni + gg) tan;] (3,19)

. 2+hz/2
I = %F /ﬁ ’ dz‘(nz(x,y,z‘)-l) - % (ni + ag) At (3.20)
Jz=ph2a/2
. _ ' 2 .
é-ér--%-exp(-l‘) 2+ A Yexp(i)| v=o (3.21)
* acl acz

where Al 18 the increment in ¢ in going from z-pA2/2 to z+A2z2/2,
The initial condition for v is

VIgEat) = wiR,y,2,t)/Glg,8) (3.22)
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To solve Eg. (3.21) we utilize the fact that for
sufficiently small vslues of Af{ (l.e., Az) the effect of the
exponential factors exp(:l) in this equation is small. Hence,

we solve the simpler equation obtained when these factors
are equated to unity

s 4 f 22 2

3
L =32yt y)|v=o (3.23)
w2 S

3.4.3 Method of 3olution = We use a fast Fourler
transform technigue to solve Eq., (3.23). The basis of this
approach is the fact that the solution of Eq. (3.23) can be
expressed in the form of a discrete Fourier series

N=1 N=1 _
vig,g,t) = 25 _an(g,t) exp 1(pmql+qncz)l (3.24)
m=0 n=0

where the Fourier coefficients an are determined from the
initial data and Egq. (3.23) as follows. The initial valves
of an are obtained by taking the discrete Fourier transform
of the initial values of v(Z,&y,t) over a mesh of points

Gy = [(A=(N/2)) A7y ty = [3=(N/2)) A (2,3 = 0/1,...,N=1)

N-1 N-1

- (_])m'H'l —t — ( N R N i
P20 320
exp|- 2L (my + n3)] (3.25)

The ¢ dependence of an is then determined by snubstituting
Eq. (3.24) in Eg. (3.23), which yields
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v ,

from which it follows that

i!p:\ + qi! pE
an(E,t) = an(Ci.t) exp |- (3.27)

Finally, it can be shown that in order for the discrete
Fourier series representation of v given in Egq. (3.24) to be
real when v is real, the coefficients P and q, must have the
form

b = i (m - g) (3.28)
4y =g (n- B (3.29)

Hence, for discrete points ¢, = (2 = N/2)Ag, Ly ™ (3 - N/2)Ag
(zfj - °'1pnuo'N'l)

v((z - ¥)ae (3 - %) e e t)

N~-1 N-1
- (_l)l+j :L ZL (_1)m+n an(ﬁirt)
m=0 n=0

2 2
N N
N ) n-z 27
expl- 1 B N + N + 1 5 (em + jn) (3.30

where £ = 2n2£5/(Ac)2. Note that v is simply (-l)2+j timas

the discrete Fourier transform of (-l)m+n Umn(a,t).
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The effect of the medium and the factor exp[(-i/2(c§
+ ;g)A&] introduced by the coordinate transformation is taken
into account at each f, step in the calculation by multiplying
the value of v obtained in the previous step b the guantity
exp(l') defined in Eq. (3.20), l.e., the initial value inserted
in Eg. (3.25) is exp(l') times the value of v determined from
the previous steps.

3.4.4 Effect of Absorption — The ahsorptive contri-

bution to I' is calculated from the relations

. ikYo ‘z+hz/2 Ao
Paps (Xe¥r2,t) = —— dz” (5= (3.31)
Jz=he/2 (o] abs
M=1
(y=1) a exp(=a,2) E o
be = I _pulse 2 V(5 =B grhome ) |
o T r 7 al Nz IO T p
abs " Yo m=0 (3.32)
with
M =m) (v + uyz) t
. - &) P
‘1m O (3.33)

where v is the ratio of the specific heat of air at constant
pressurce to that at constant volume (y = 1.4), « is the mole-
p is the total
extinction coeflicient, Ve, is the transverse wind velocity

cular dbsorption coefficient of the air,

assumed to be in the x direction, PO is the ambient air pressure,
't i8 the slew rate (slewinyg assumed also to be in the x direc~-

tion) ' L‘npulse
polarizability of air.

ls the eneryy per pulse, and Yo is the molecular

[In writing E¢. (3,32) we have assumed that the laser
cnergy is delivered in a serigs of pulses for which the pulsge
length is short enough that no heating occurs during a pulse.
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Moreover, we have assumed that the interval between pulses

is long enough that the heating caused by the xnth pulse is
fully developed by the time that the m + 18t pulse arrives
(i,e., transient density changes traveling at the velocity of
sound are assumed to have departed from the region occupied
by the beam).

3.4.5 Effect of Turbulence — The contribution to T
from turbulence is calculated by a Fourier transform technique
which yields a two-dimensiconal distribution of gaussian
random numbers having correlation properties consistent with
those associated with the phase variations caused by Kolmogorov
turbulence, In particulare, we represent r
Stieltjes integral

turb by the Fourier=-

f‘tum‘ﬁ’ - i/‘df‘@ exp(i K + x) (3.34)

The increments dr satisfy the relations

dl (K)> = 0 (3.35)
n W -
«af (k) af" (K,) > = 0 K, # K,

where @F(E) ig the spatial spectrum of the phase variations and
K is the spatial wavenumber. Note that, with this representa-
tion, Fturb satisfies the Weiner-Khintchin theorem

. " - ' ) . i
(Feurn 1) Frurp (%5)) /d!S b (K) exp|i K o (%) - xp)| (3.37)
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as reguired by any valid representation of a homogeneous
random process.

We have utilized a modified von Karman spectrum for ¢y

.207 ¢} k2 Az K;11/3
¢f1(5_) = ) 11/6 (3,38)
1 + K
K
KO

where Cg is the index structure constant, Az is the z incre-
ment, and Ko is 2n divided by the outer scale of turbulence
Lge The Fourier integral in Eq. (3.34) is evaluated by the
following discrete Fourlier transform approximation of this
integral

"turp tmen)

N=l N=1 1y ) 2n
: (=1) a£i>exp[i N (m2 o+ njﬂ

2 1712

n=0  3=0 L. <(Q ) ?)2 . (j _ g)2> <$§§}

(3.39)

where the a:j are complex gaussian random numbers (we assume
that iturb is gaussian) with zero mean and the following
correction properties

L
804 = 8Nay,N-9 (3.40)

anunﬁw Mmgmtiy)>- 0 all v, (3.41)
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<Real(utj) Reul(ng.J,)> © 0 R°AL,iP) and LofN-4,i #N-)  (3.42)

<Imag(a”) Imng(a,l,j .)>- 0 2 %%, %) and £ ‘#N-2,] ¥h-) {3.43)

<Rea1(au) Renl(aﬂ.J,)> « ] g =g, } =y or 2 mN=g,] =N-{ (3.44)
<Imng(n”) Imag(aﬂ,j.)> -] Lomp g -y {3.45)

<lmng(a“) Imag(au,J )> - =] L wN=2,] ‘wN=} {3.46)

The quantity o is the constant

1/2
. 2 L2 5/3) o
o} .070(k Cy Az Lo NA% (3.47)
where Ax 18 the distance between mesh pointa.
Evidence that the randem phase screens, generated in
the manner described above, have the desired statistical

properties is provided by the phase structure function results
shown in Fig., 3.9. The theoretical value for the phase
structure function for the spectrum @F given in Egq. (3.38) is

D¢(r) - <(¢(§1) - ¢(52))2>

, 5/6
(K. r/2) Ke se (K, )
) 2 .2 -5/3 . ..o 5/6 ¢
2.51 k“ ¢y az K [-6 T(IT7T8) ]
(3.48)
ro= |x - %, (3.49)
39

-
e




40

which in the limit of an infinite outer scale reduces to

5/3

D, (r) = 2.91 k2 cti Az r L o+ ow (3.50)

The dashed curved line and the straight line in Fig. 3.9 are
phase structure function results calculated from Eqs. (3.48)
and (3.50). 'The somewhat wicgjly solid line is the phase
structure function result obtained by averaging over 100
realizations of phase screen samples generated by a fast
Fourier transform evaluation of the relation given in Eq,
{3,39)., In these runs we usad a 64 % 64 mesh with 1,106 cm
between mesh points and an ouvter scale length of two meters.
3.4.6 Medium Storayge and Update =~ At each § step
in the propagatioh calculation we store the aksorptive contri-
bution to [ (although this is done in large core memory on the
CDC 7600 computer that we are using, it could also be done hy
writing on the disk). The effect of a transverse wind and
of slewiny is taken into account in this storage process by
first performing a mesh translation on the new and old data,
The data are moved a distance equal to the distance that the
wind and slewing moves the heated air between pulses. Hence,
the stored values of raba are those that will be seen by the
naext pulsge,

Rather than calculate lturp @new for each pulse in a
multipulse Bequence, we calculate a Bingle set of phase
screens at the outset and store them fc- later uase. The
effect of the wind and slewing is taken into account by trans-
lating these phase screens as described above.

The overall logic and sequence of events in the propa-
gation simulation, including the medium storage and update
processes described above, are indicated in the flow diagram
given in Fig. 3,10,
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3.5 Taryet Simulation

The essence of the closed-lcop adaptive optical control
concept is that the reflection characteristics of typical
targets are such that highlights or glints will exist and
that the return from these regions can be used as a reference
to sense the changes in the transmitter phase distribution
required to correct for atmospheric phase distortions. Hence,
we approximate the target by a set of glintas. Each glint is
represented as a gaussian reflectivity distribution,

i|el'
M
Reflectivity Distribution = O o (x) (3.51)
mel
(x = §m)2
hm(f_) n am exp |- —~—"——_§-2"——‘- (3.52)
m
where m is the number of glints and a_, X . §h are the strength,
position and width of the mth glint.

The initial data for the return wave are determined by
multiplying the incident laser field by the target reflec-
tivity function given in Egq. (3.51).
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1v. SIMULATION RESULTS

4.1 Mirror Simulation Results

The major portion of the effort on the mirror simulation
has been devoted to the problem of determining the number of
mirror actuators required to yield a good fit to the phase
surfaces that must be generated to compensate for the effects
of atmospheric turbulence. In addition to the computer simu-
lation results, we have obtained annlytical astimates of the
effects of turbulence on peak irradiance at a targat, both
with and without adaptive compensation. The analytical results
obtained for the effect of turbulence on peak irradiance without
adaptive compensation are discussed in Section 4.1.1. Analy-
tical and computer simulation results obtained from the effect
of adaptive compensation with a mirror having a finite number
of degrees of freedom (l.e., actuators) are discussed in
Section 4.1.2.

We also have done some work on the dependence of mirror
fit on the number of mirror actuators for the case of phase
conjugate compensuation for the effects of thermal blooming,
These results are discussed in Section 4.1.3.

4.1.1 Effect of Turbulence on Peak Irradiance — An
interpretation of theoretical results derived for the ensemble-
averaged irradiance distribution of a laser beam propagated
through atmospheric turbulence® indicates that the effect of
the turbulence can be accounted for by introducing an appro-
priately chosen random phase screen in front of the trans-
mitter aperture. Utilizing this result, we can write the
Strehl ratio (SR) associated with the turbulence in the form
(recall that the Strehl ratio due to a wave distortion is
defined as the ratio of the peak irradlance in the presence of
the distortion to the peak irradiance of the undistorted beam)

Praceding page blank
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[ oty exole L b oneene
g L e [ ug) o) expl- g Dyt r.j (4.1)

\'1(0)"““ turb ./dy_‘./di" n, () \lo(.&“)

SR =

where u, is the aperture field distribution and D¢(5‘-§“) is
the phase structure function of the random phase screen. For
Kolmogorov turbulence with an infinite outer scale, the appro-

priate phase structure function is

‘2 .15/
dz'(L) c:(z‘) (4.2)

D, (=) = 2,91 k2 [xreg? |33 | :
JO

¢
where Cﬁ is the index structure constant, k is the wavenumber
2n/\ and 2z is the distance to the target,
For a uniformly illuminated circular aperture of
diameter d, the Strehl ratio obtained from Eq., (4.1) is

1
SR = l—-/ dr, alcon'l(n) - a(l-cz)l/zl exp(-u C5/3) (4.3)

n
YO

with
3 W5/3
ko= 1,456 k2 45/3/ dz * (-z-;) clizn (4.4)
JO
5/3
- 7. 44 (-r‘-*-) (4.5)
(o]

whero r, i@ the phase coherence length defined by Fried

‘ +\5/3
-5/3 _ . 2 [* .(L 2, .

6.88 r_ 2.91k‘/0 dz z) cdiz (4.6)
Numerical results for the Strehl ratio defined in Eq. (4.3)
are shown in Fig., 4.1 (curve labeled "no adaptive optics")
for values of [ up to 15, For larger values of 4, the follow-
ing asymptotic result applies

6/5 9/5

SR ~ 4.407 R - 5,692 ¢ 77, g .18 (4.7)
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Note that for sufficiently large 3, the Strehl ratio is jiven
by the first term in Eq. (4.7) and from Eq. (4.5) th.s cmn be

, written sinply as the ratio (ro/d)z. which is inversely related

to the number of phase coherence areas contained in the trans-

i mitter apsrture.

The effect of having an adaptive tilt control syntem
that dynamically removes the tilt component of the turbulence
distortion can be accounted for by replacing the structure
function Dy in Eq. (4.1) by D, = <la (5‘-5“))2n where a is
a least sguares estimate of the instantaneous tilt vector.
Utilizing the reosults for a derived by Fried.6 we can write
the following expression for the Strehl ratio ohtained for a

uniformly illuminated circular aperture having adaptive tilt
control

LRt

YT e

i

‘1

; = 16 . ot 3 -, 2y1/2

(SR),ith tilt ; / d¢ ¢ cos l‘: (1=t
control o

T

expl-a (373 (1-.-,1/3)] (4.8)

Nunerical results for the Strehl ratio defined in Eq. (4.8)

: are shown in Fig. 4.1 (curve labeled "with tilt control').
To ags8ist in the use of Fig,

4,1 we have plotted 11 as a function
of Ci 2 in Fig. 4.2, 1t appears that tilt control alone is a
reasonably effective compensation technique for values of @

v W

1 less than 20. At 10.6 um this condition will be satisfied

in many scenarios, whervas at 3.8 um it will seldom be
patisfied (e.y., we note from Fig, 4.2 that ¢ 18 less than 20
for .7 m optics at 10.6 um for all valuecs of Cs 2 2 x 10710
] ml/3 which, for a 4 km path, requires that Cg z v 2.5 x 10"15
em™2/3),
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4.1.2 Adaptive Compensation for Turbulence Effects —
Effect of Having a Finite Number of Actuators — It was noted

in the previous section that the effect of atmospheric turbu-
lence on the ensemble-averaged irradiance distribution can be
accountad for by introducing a random phase screen in front
of the tranamitting aperture. The appropriate phase distri-
bution is that which would be produced by a point source
located on the target.* Thig implies that an ideal adaptive
optics system should be able to completely compensate for the
effects of the turbulence by introducing thae conjugate phase
distribution as a corraction.+ The degree to which this is
achieved depends on whether the target has a point-glint
scatterer that provides the requisite phase information andé
on the degree to which the adaptive optics system can repro-
duce the desired phase distribution. In this section we
shall assume that the target has a point~-glint scatterer so
that the ability of the adaptive optics system tc compensate
for the turbulence depends solely on its ability to reproduce
the desired phase distribution. This depends largely on the
numpber of degrees of freedom possessed by the correcting
opt.ics.

To a good approximation, we can represent the finite
spatial bandwidth of the optiecs by writing the residual phase
error, l.e., the difference between the desired phasc distri-
bution and the actual distribution obtained from the optics,
in the form

"In thig discussion, and in that given in Section 4.1.1, we
assume that amplitude scintillation effects are small. TIf
they are not small, the effect of atmospheric turbulence
canhot be represented simply by a phase screen but rather
we must also introduce a random apodization.

+Subject to the assumption that amplitude effects are negli-
gible.
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A (%) = ¢ (x) - (4.9)
-[dﬁ hix®)
with
hix) = 1, Ix| < b
=0, x| > b (4.10)

In this representation the effect of the finite spatial band-
width of the optics is approximated by a spatial averaging
process, i1.e., we assume that the phase correction introduced
by the adaptive optics at a point is a uniformly weighted
average of the desired phase correction at all surrounding
points within a circle of radius b, For deformable optics, we
can relate the value of b to the number of mirror actuators

N, by poting that the spatial spectrum of the weilghting function
h{x) is [2J, (Kb)/Kb]%, which has appreciable magnitude only in
the domain Kb & 3. More precisely, we have found that good
agreement is obtained between the theory discussed here and the
mirror simulation results discussecd later if Kb = 2.72 where

K is the cutoff wavenumber of thc mirror., (Note that the
spectrum of the weighting function h is less than .1 for all

Kb - 2.72.) Hence, since the Nyquist frequency of a mirror
having actuators separated by a distance ¥ a is n/Va, we let

. _ 172
p = 2272, L 2.72 [ v 4 (4.11)
4N

a
where d {8 the mirror diameter.

The Strehl ratio obtained in the presence of the residual

phase error Ad defined in Eq. (4.9) is given by Bg. (4.1) with
the structure function D replaced by
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which in the case of Kolmogorov turbulence with an infinite
outer scale can be written

" 5/3 ‘o
Dpp(X7=X*) = 6.454 (;_-) /o dc

C~8/3 ,l
o

- Jo(q)]

2
1 - 29, (g )

nes

with u = |x* - x*| and r

o 9iven by Eq., (4,2).
ftlluminated circular aperture of diameter d,

exprassion for the Strehl ratio obtained with
rection is

For a uniformly
the corresponding
adaptive cor-

exp[-e ;373 f(c, 5)] (4.14)

with § given by Eq. (4.5) anqd

b £)12
/o ag 78/3 ll-ao(,;)] 1 - 2, (EFI 5)
f("" 3) ) [ a7 ll"’o“-’l 1 (4.15)

We have evaluated the inteqral in Eq. (4.14) numeri-
cally and have found that, over a wide range of values for the
paramete ‘s 3 and b/d, it is approximated extremely well by the

result obtained when £(r,b/d) is replaced by its asymptotic
result for b/dr -~ 1, which im
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The corresponding expression for the SR is

SR . exp(—.l45 ] (g)5/3)

a exp(-.093 ‘8 N;5/6> (4.17)

where we have used the relation between b/d and N, given in
Eq. (4.11). The discrepancy between the approximation in Eq.
{4,17) and the more exact result in Eq. (4.14) 1is significant
only for very large values of (3 and small values of ua. This
is illustrated by Fig, 4.3 which shows the results obtained
for ¢ = 35,41 and 177,05. For values of N, greater than 5 the
discrepancy is less than one percent.

To provide a check on the above analytical work, we
have performed two types of mirror simulations. In each, the
effect of a turbulent phase screen placed in front of an
aperture was compensated by a mirror with a finite number of
actuators, The average Strehl ratio obtained from a sequance
of five indcpendent phasc screens was determined as a function
of the number of actuators. In one of the simulations the
deformable mirror software described in Section 3.3 was used
in conjunction with a sinusoidal multidither COAT algorithm of
the type used previously at HRL in our COAY servo system
studies.2 In the other simulation the mirror was modeled by
a segmented mirror with piston and tilt control on each segment.
The piston and tilt settings for each segment werce determined
by a least syuares fit to the random phase surfacc nver the
segmment, The results obtained from these simulations are
summarized in Fig., 4.4. 'The ayreement between the piston and
tilt results and the theoretical predictions obtained from
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Eqo. (4.14) and (4.17) is very good for all values of §,
which gives us confidence in the theoretical results given in
these equations. We believe that these results are repre-
sentative of those that would be obtained with a deformable
mirror in the absence of the 2Nu problem discussed below.

The results actually obtained with a deformable mirror will
depend on the degree to which the 2Nn problem is avoided,

The agreement between the theory and the deformable
mirror-multidither COAT simulation results is reasonably good
for moderate values of 4 but is poor for large values of 3,

We attribute the poor results obtained at large values of g to

a 2Nn-type of behavior. The deformable mirror simulation that
was used in these runs has a 2Nu correction loop that introduces
a 213 correction whenever the phase difference between actuators
exceeds four radians. The intent is toc suppress 2n errors
introduced by the servo aystem. However, if the phase distortion
that is to be removed by the mirror changes by more than four
radiana between actuators, the 2un "correction" introduced by

the 2Nt correction loop is, in fact, a 21 error and the

mirror performance is corresponding degraded. This problem
could be avoided by removing the 2Nn correction loop but then

wa would be faced with 2N» servo errors. One way to avoid

this problem is to use more actuators so that the phase

change between actuators never exceeda four radians., Another
way would be to design the mirror so that the likelihood of

2Nt crrors i8 reduced, in which cadge the 2Nw correction loop
could be eliminated. More work clearly needs to be done on

this problem,

4.1.3 Compensation for Thermal Blooming Phase
Profiles — As a part of our effort to provide an understand=-
ing of the reasons for the relatively meager improvement in
beam quality realized with phase conjuyate compensation, we
have investigated the naturc of the phase disgtribution of the
return wave in the thermal blooming problem. We have found




T e o

Lo Sond

I e

bEli -~ aeout Ol

e i i 2 4

TR 1 T L e

T

that the phase of the return wave reflected from a gaussian
glint in the target plane does not vary necarly as much as
one would expect based on the type of calculation performed
by Lincoln Laboratory in their optimization studies, ?

Specifically, the phasc correction used in the Lincoln
Laboratory work is of the form

AN ,('
Ap = % ﬁf Pn(l ¢ Nu) [”f‘dCi lu(Cilﬁzoo)lz (4.18)

where ND and N are the distortion and slewing numbers which,
in the notation used in this report, are given by the relations

vy . (vy=1) a P Kkf
N, = -2

R o (4.19)

N, = Qf/v, (4.20)

Yo is the polarizability of the air, y is the ratioc of the
specific heatas at constant pressure and volume, a i8 the
ahsorption coefficient, P is the average power, k is the
wavenumber, f is the focal distance, Vo i8 the crosswind
veloucity, P i8 the ambient atmospheric pressure, Vo is the
e-folding radius of the laser beam (which we assume to have

a gaussian irradiance distribution),

and ¢ i8 the Blew rate.
The factor

is a constant that the Lincoln Laboratory work
indicates is nearly equal to 1.5 for ynod phase compensation
under a variety of initial Leam conditions.

For a gaussian beam truncated outside a circle of

diamoter 3“0' the maximum phase excursion predicted by Eq.
(4.18) is
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Max. Phase Excursion = A (w) = Ad (=w)

- N ‘1.5
Yy D . 2
® = == An(l+N ) / d;,” exp(-57)
2 N(u u) J-1.5
. 856 ¥ N,
A ln(l+Nm) (4.21)

W

and if ¥ = 1.5, Ny = 21.6, and N, = 4, this predicts a maxi-
mum phase excursion of 11.2 radians., 1In comparison, we have
measured a maximum phase excursion for the field reflected
from a gaussian glint under equivalent conditions (for N, and
N,) to be only about two radians. We believe that this dis-
crepancy is caused principally by the extended nature of the
target glint, i.e., it is a gaussian glint rather than a point
glints, and that this discrepancy supports our contention that
the disappointingly small amount of correction achieved with
phase conjugate compensation is related to the isoplanatic
problem discussed in Section 2.1.

4.2 Phage Compensation for the Effects of Turbulence
and Thermal Bliooming

As mentioned earlier, we have obtained phase compen=-
sation data only for the case in which a phase conjugate control
policy is used. Since all return wave adaptive cptical systems
use the conjugate phase as a correction (see the discussion
in Section 2,1), the data that we have obtained apply to all
such systems; e.g., they apply to conventional phase conjugate
systems, to return-wave multidither systems, and to all
systems based on a maximization of the sharpness of an image
of the target,

All of the data were obtained with the time-dependent
propayation code described in Section 3.4. Since we ware
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primarily intereated in the correction obtainable under cw
conditions, we attempted to choose pulse repetition frequan-
cies that yleld good approximations to the cw blooming condition.
The pulse repetition frequency reyguired to yield conditions
comparable to those existing with cw propagation depends on

the heam diameter, distance to the focus, wind velocity, and
slew rate, Generally, it is neceasary to choose a rapetition
rate high enouqh that an air parcel moves only a fraction of

the diffraction-limited beam diameter between pulses. This
condition can be expressed in the form

Vg (1 + %5) 3
Pulse Repetition Freguency .» T o {(4.22) .
kig

where v, i8 the trunsverse wind velocity, Q@ is the slew rate, %
f L8 the focal distance, k is the wavenumber and Mo is a
characteristic beam dimension of the transmitted beam (e.g.,
the e-folding radius of a gaussian beam).

Figure 4.5 shows a comparison of results obtained
with the tima-dependent code and a cw code. In this came
we plot thr Strehl ratio (peak irradiance in the presence of
distortion divided by the peak lrradiance obtainable without
distecrtion) of an untruncated gaussian beam focussed at 2 km.

v i abed e

Other parameter valucs applicable to these results are an
average power level of 50 kW, a wavelength of 10.6 um, an
e-folding radius o of 23 cm (90% of the energy of the initial
gaussian beam contained with a 70 cm diameter circle), an
absorption coefficiont of 2 x 107 ° em™}, a crosswind velocity
Vo of 10 m/Ber, and a slew rate @ cqual to zero. Apparently,
a pulge repetition frequency of 1000 llz or more is required to
simulate cw propagation under thase conditions. This result
{8 in good agrerement with the condition given in Eq. (4.22),
which predizts that vmp must excoed 682 Hz, A8 an aside, it
i interesting to note the reduction in the distorting effect

of thermal blooming at the lower repetition freguenciosn.
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It becomes increasingly more expensive to simulate cw
conditions as the slew rate increases. The reason for this
can be seen from the data in Fig. 4.8, Note that the number
of pulmes reguired to reach a steady state, be it the cw
state or not, tends to increase linearly with increasing pulse
repetition frequency. But increasing slew rates imply
increasing pulse repetition frequencies, as indicated in Eg.
(4,22). Hence, we must propagate more pulses to reach a
ateady state as () increases. In our calculations we have
used the largest pulse rapetition frequency consistent with
the dual requirements that we simulate the cw state and yet
do not require an excessive number of pulses. Typlcally, we
have used no more than 20 pulses for a given simulation. At
high slew rates, this has remulted in some departure of the
multipulse of results from those that would be obtained from
a cw code. Principally, the difference im that for a given
avarage power the multipulse results tend to yield Strehl
ratlos that are 30 to 408 higher than those obtained from a
cw coda. The same type of power optimization curves are
obtained except that tho peak irradiance and the transmitter
power required to yield the peak are higher (see Fig. 4.6
for example). This discrepancy between the multipulse and
cw results is not important in our studies because the main
goal of these studiee ls to ascertain the efficacy of
adaptive optics as a technigque for increasing the magnitude
of the peak irradiance at the target, not to establish the
preciso power level at which that peak occurs.

In order to determine the relative amount of correction
to be expacted for turbulence and thermal blooming effects,
we have made runs in wnich one or the other ot these uffects
was absent, In addition, we have obtained data for adaptive
compensation of the combined effects of turbulence and
thermal blooming. 1In all of these calculations we have uased
a phase conjugate correction algorithm in which the transmitter
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Fig, 4.6, Comparison of power optimization curvoes
obtained from the multipulse and ow
propagation codes.
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phase was equated on a mesh-point-by-mesh-point basis to the
negative of the phase returned from the target. The target
was represented by a single gaussian glint having an e-folding
width equal to 4 em. The results obtained for propagation at
8 CO2 lagser wavelength of 10.6 um are discussed in Section
4.2.1 and those obtained for propagation at a DF laser wave-
length of 3,8 um are discussed in Section 4.2.2. In these
calculaticns the absorption coefficient was assumed equal to
2. 10°% cm~! at 10.6 um and 4 x 10”7 cm~ ! at 3.8 um,

4.2.1 Phase Conjugate Compensation at 10.6 um =— One
of the more interesting results from these studies is the
observation that much better thermal blooming compensation
is obtained with untruncated gaussian beams than with trun-
cated gaussian beams. An example of the results obtained with
an untruncated gaussian beam is8 shown in Fig. 4.7, which
applies to the propagation of a beam having an e-folding radius
of 23 cm (90% of the energy in the initial irradiance distri=-
bution is contained within a circle having a 70 cm diameter),
a slew rate of 20 mrad/sec, a focal distance of 2 km, and
an index structure constant CS = 0 (i,e., no turbulence).
Phasa conjugate compensation increases the peak irradiance
bv a factor of 2.3 and the trangmitter power at which the
peak occurs is increased by a factor of two. For comparison,
the rcsults obtained for a gaussian beam truncated at a beam

radius of 35 cm, with all other beam and scenario parameters
identiral to those discussed above, are shown in Fig. 4.8,
In this camse, phase conjugate compensation increases the
peak irradiance only by about 30%. We believe that the
difference in phase compensation achieved with and without
beam truncation can be explained by the isuplanatic problem
discussed in Section 2.1, As shown in Fig. 4.9, the fields
within the circle of beam truncation returned from points
within the domain of an extended glint, such as the gaussian
glint used in our numerical studies, pass through air that
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has much larger density gradients than the fields returned
outside of the circle of becam truncation. ilence, the
distorting cffcct that a finite glint has on the phase of the
return wave is less severe outside of the region of truncation
than it is within this region and, therefore, better compen-
sation should be obtained with infinite beams than with
truncated. 1In fact, it appears that for the infinite beam
case shown in Fig. 4.7 almost all of the factor of 2.3
increase in target irradiance is obtained from fields outside
of a 70 em diameter circle.

Results for phase conjugate compensation of the
combined effects of turbulence and thermal blooming are shown
in Figs. 4.10, 4.11 and 4.12. All of these results apply
to truncated gaussrian beams propagated through a single
realization of a random medlum; i,e., no ensemble~-averaging
over different random medium realizations was done. Genarally,
these results, and others that we have obtained, indicate
that phase conjugate compensation yields good compensation
for the effacts of turbulence but very little for the effects
of thermal blooming, Fortunately, the ability to compensate
for the effects of turbulence is apparently not degraded by
the presence of thermal bloominy effects even though phase
conjugate compensation is not very effcctive as a thermal
blooming compengation technique. Thue net improvement in beam
quality obtained with phase conjugate compensation ls most
impressive for the corditions depicted in Fig., 4.12 which
applies to a 1,2 m beam propagated through moderately streong
turbulence having an index structure constant of 6 x 10‘15
em™2/3, This is to be expucted, of course, since turbulenco
cffocts are most pronvunced in the casce of large bheams and
high turbulcnce levels,

The severity of the thermal blooming problem for cow
propagation at 10.6 um has cngendered a considerable amount
of interest recently in multipulse propagation in which the
time betweon pulses is sufficient to allow the local cross-
wind velocity to convect partially the heated air from the
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rogion aoccupied by the beam, This ig a favorable situation
for thermal blooming compensation because the blooming under
these conditions tends to occur closer to the trangmitter

and is, therefore, more nearly a pure phase effect which can
be corrected by a compensating phase distribution on the
transmitted wave. Moreover, the deleterious effects of the
isoplanatic problem discuaged in Section 2.1 are greatly
alleviated so that we should cobtain significantly better
phase compensation regults in the multipulse mode than we have
for cw propagation. This is illustrated by the results shown
in Fig. 4.13. These results apply to phase conjugate compen-
sation for the residual effects of thermal blooming on the
propagation of 12 kJ pulscs of 10.6 um energy radiated in a
truncated gausgian beam having a diameter of 70 om and an
a=folding radius of 23 cm (90% of the energy in the gaussian
contained within a circle having a 70 e¢m diameter). The
crogswind velocity is 10 m/sec and the beam is8 being slewed
at 20 mrad/scc. The results are plotted as a function of

averagye power, which is revlated to the pulse repetition rate

‘rep by

ST

P (4.23)

AV T rep Ebulse
The elfect of thermal blooming within a pulse 18 neylected

in this calculation. This should be relatively small for
short pulse lengths., For the conditions pertalining to the
regults in Fig. 4.13, the minimum pulse length consistent with
having a pcak irradiance below the sca level air breakdown
threshold of 107 watts/cm2 is 10 usec. (This assumes that

the Strehl ratio is not degraded by thermal blooming effects.)
The significant increase in target irrvadiance obtained with

phase compensation verifics that multipulse propagation is
a very favorable mode of operation for phase compensation, |
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4.2.2  Phase Conjugate Compensation at 3.8 im — The
phase conjugate correction results obtained at 3.8 um are
consistent with thoge cbtained at 10.6 ym in that we have
observed that significant correction is achieved for turbu-
lence effectsa but that very little correction is realized
for thermal blooming. The impressive amount of correction
achievable for turbulence effects in the absence of thermal
blooming ie illustrated by the Strohl ratio results given
in Figs, 4.14 and 4,15 which apply to a case in which the
index structure constant is 10"15 cm'2/3. The results in
Fig. 4.14 pertain to a gaussian beam with an e-folding radius
»f 13.8 cm (90% of the energy in the initial irradiance
dietribution is contained within a circle having a 40 om
diameter) truncated outside a 70 cm diameter circle. The
path length is 2 km and the slew rate is 20 mrad/sec. 'The
repults in Fig, 4.15 apply to & gaussian beam with an e-folding
radius of 40 om (90% of the energy in the initial irradiance
distribution is contained within a c¢ircle having a 1.2 m
diameter) truncated outslde a 1.2 m eircle., The path length
in this case i8 4 km and the slew rate is 5 mrad/sec. 1In
both cases the Strehl radio obtained with correction eventually
attains a value within 10 to 20% of the frec-space value,
Although the results in Fig. 4.15 exhibit a rather slow
increase in Strehl ratio with successive pulges until the
twelfth pulse, we believe that an actual phase conjugate
syptom would increasc the Strehl ratio much faster, The
Blow build-up seen in Fig. 4.15 is probably caused by the
fact that we did not iterate the correction process at cach
step: rather, a single phase measurement was made based on
the return of a single reference pulge propagated just prior
to the high power pulse. The single pulse 1eference is adeguate
when the beam is in a nearly converged state, as it is later
on in the pulse train, but does not give an accurate phase
estimate carly in the pulse sequence, Barly in the pulse
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train the return comes from a more extended portion of the
target because of the broadness of the tranamitted beam and
the very significant fluctuation in the amplitude of that
beam in the target plane.

Results for phase conjugate correction of the combined
effects of turbulence and thermal blooming are shown in Figs,
4,16 and 4.17. The results in Fig., 4.16 apply to a truncated
gausgian beam with an e=-folding radjus of 23 cm and a trun-

cation c¢ircle diameter of 70 cm, This beam is being slewed at

20 mrad/sec., The results in Fig. 4.17 pertain to a truncated
gaussian beam with an e-folding radius of 40 cm and a trun-
cation circle diameter of 1.2 m (same degree of ftruncation aa
the 70 cm beam used in Fig., 21), This beam is being alewed
at only 5 mrad/sec. In addition to demonstrating the ability
of phase conjuyate adaptive systems to achieve substantial
vorrections for the effects of turbulence, these results
1llustrate the advantage of using large beams in thermal
blooming situationa. Even though the slew rate in Fig., 4.17
is four timea slowar than trat in Fig. 4.16, the peak
irradiance obtained without correction is Increased by a
factor of five. Likewise, the peak irradiance obtained in
Fig., 4.17 with phase conjugate correction is incrcased by a
factor of three beyond the comparable result obtained in

Fig. 4.16, This improvement in peak irradiance can be
attributed to the increased size of the beam used in Fig,
4,17 (1.2 m optics vorsus 7¢ cm optics),
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V. CONCLUSIONS AND RECOMMENDATI1ONS

5.1 Conclusions

The most important conclusion that we have reached on
the basis of the work done on this contract is that adaptive
optical systems employing any of the various types of return-
wave control algorithma are not likely to yield very singi-
ficant compensation for the effects of cw thermal blooming
unless the target scattering occurs over regions having
extent considerably smaller than the diffraction-limited heam
size. As a matter of fact, some of the data we have obtained
indicate that under some conditions such adaptive systems
may actually decrease target irradiance instead of increasing
it. The analysis in Section 2.1 of this report indicates that
the problem with the return-wave contrcl algorithm originates
from the fact that it inherently tends to use the conjugate
of the phase of the field returned from the target as the
phase correction. This phase conjugate control policy works
well a8 long as the target acts as a point scatterer or a
discrete collection of such scatterers. However, if the
scattering originates from extended scatterers rather than
point scatterers, thare is an isoplanatic-type of effect
wherein the return phase becomes garbled by the interference
between returns from the various parts of the scatterer.

Thig isoplanatic effect is of no consequence for moal turbu-
leance compensation situations since the isoplanatic area is
usually larger than the principal scatteriny region. Hence,
return-wave syatems'yield good compensation for turbulcnce
effects, For cw thermal blooming, however, our computer
resulte indicate that the isoplanatic region is samaller than
the diffraction-limited spot Bize. We basc this conclusion
on the fact that very little compensation was obtained for
cw thermal blooming effects with glints having an extent
approximately equal to the diffraction-limited spot size.
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It should be noted that the above conclusions apply
to dny adaptive optical system employinyg a return wave-type
of control algnrithm, not just the explicit phase conjugate-
type of system. As discussed in Section 1I, this includes
systems that operate by maximizing some functional of the
irradiance distribution obtained by imaging the target; e.g.,
maximization of the energy through a pinhole for a point
glint target or maximizing the "sharpness" of an image of an
extended target.

With regard to turbuluhce compensation, we have found
that return-wave adaptive optical systems yield significant
corrections. Typically, it is possible to obtain almost
diffraction-limited target intensities even for relatively
strong turbulence. The amount of improvement is particularly
impressive at 3.8 um where the turbulence degradation is quite
Bevere without adaptive compensation: e.y., we have nbtained
a facter of seven increase in peak target irradiance for a
70 cm diameter, 3.8 um beam propagated over a 4 km path having
a turbulence level equivalent to an index structure constant
of C: * 10'15 c*m'z/3 (moderate turbulence on a low altitude
path).

In the results discussed above, and in all the other
results in which the full propagation simulation was used,
we have not simulated the c¢ffect of having fewer mirror
actuators than mesgh points. We have simply cquated the phase
corroction to the conjugate of the return wave oh a mesh=-
point=by-mesh-point basis. However, we have obtained guanti-
tative estimates of the deygrading effect of having fewer
actuators than mesh points from both theoretical analysis
and a simplificd computer simulation in which the effect of
turbulence was represented by a single phase screen placed
in front of the tranamitter (sce Scction 4.2 for details),
Using the theory developed in Section 4.2.2, which yields
results that agrece woell with the computer simulation results,
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we obtain the following condition on the number of actuators
per unit arca of mirror surface required to yield a Strehl
ratio of .9 or greater (i.e,, the degradation in Strehl ratio
due to the finite number of mirror actuators is < .10)

Number of Actuators 2 32 6/5
Required per Unit L0529 (k" Cy 2) (5.1)
Area

We estimate, for example, that approximately .037
actuators per cm2 of primary mirror area are reguired to
vield results comparable to the mesh-point=-by-mesh-point
results for the 3.8 um case cited above, i.e,, approximately
1431 actuators are required for 70 cm optics.

In the case of multipulse propagation, we have found
that adaptive optical systems employing return wave-type of
control alyorithms can significantly increase the target
irradiance in thermal blooming situationsa. The amount of
correction attained varies depending on the conditions but
van approach a factor of three in some casee. The reasoun for
the significantly better correction obtained for multiple

pulse thermal blooming cffects is principally that the diatort-

ing effect of the thermal blomming tends to mcve back away
from the target and cloger Lo the transmitter. This has the
effect of increasing the isoplanatic area at the taryet and
thus alleviat¢r the problem that occurs with cw thermal
blooming.

Although we have not yet obtained computer simulation
results for an adaptive optical system employing an outgoing-
wave multidither control algorithm, we have developed an
approsch to the problem, 'This approach is a modified verajon
of what has boon done at Lancoln Laboratory by Herrmann and

Hradley. Since an outgoing=wave multidither control alyorithm

is basically a maximization process, it can be roprescented

by a function maximization routine. In contrast to the
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Lincoln Laboratory work in which the target irradiance was
directly maximized with respect to the phase correction, we
racommend a simulation which more closely models the operation
of an actual adaptive optical system. To acconplish this, we
would use a time-dependent propagation code and would maximize
the integrated irradiance of the ficld returned to the trans-
mitter from the target. There are two principal differences
between this approcach and that taken by Lincoln Laboratory.
First, we would maximize the integrated irradiance of the field
returned from the target rather than the target ilrradiance
iirectly. This will allow us to determine the sensitivity of
the maximization process to the size of the receiver and the
nature of the target glint. Secondly, use of the time=
dependent code will allow us to determine whether the
ingtantanepus maximum provided by an ocutgoing=-wave multi-
dither algorithm yields a long-term global maximum irradiance
at the target or instead simply yields a secondary maximum,
Put in another way, we would be able to determine whether

it im possible to end up at a local (secondary) maximum
rather than the glokal maximum when we inptantaneously maxi=-
mize the integrated irradiance of the return field; i,e.,
could we have reached a higher maximum lad we taken a
different path in time (via a different control policy)?

5.2 Recommendations 1]
Dividing the subjecta agein on the basis ot tho type

of control alycrithm usged, we recommend the folluowing addi-

tional work on the adaptive opticse simulation problems ;

Return Wave Systems =— Generally, moirc data are needed

for a broader set of system, atmospheric, and target para-
meters than have beoen invostiyated to this date, ‘These

parameters inpclude the mirror diameter, type of mirror
(Begmonted or deformable), number of actuators, initial
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irradiance digtribution (including Jdistributions typical of
actual high power lasers), target range and slew rate, and
target glint size, Of particular importance in the cw
thermal blooming problem is the investigation of the degree
of compensation achievable as a function of target glint size.
These results should be correlated with known properties of
real targets in order to arrive at an authoritative asgessa~
mont of the effects of target glint size on return-wave
systems,

Outgoing=-Wave Multidither Symstems —- Ag indicated
earlier, we recommend that such aystems be simulated by a
function maximizatjon routine in conjunction with a time=-
dependent propagation code. Initially, at least, the main
intent of such a simulation should be to establish whether
an outgoing-wave multidither system yields a truly global
maximization for the irradiance at the target or instead
yields simply a secondary maximum. The effect of target
glint size and receiver size on the maximization process will
be of particular interest in these studies. Other parameters
that should be varied are mirror diameter, type of mirror,
number of actuators, initial irradiance distribution, and
target range and slew rata.

83




L
J

gumppn

5.
6.

S VR TR 3T SIS S STAN AT AR e B A
3 R
2 H R
I8

REFERENCES

R, A. Muller and A. Ruffington, J. Opt. Soc. Am. 64,
1200 (1974).

L. C. Bradley and J. Herrmann, Appl, Opt. 13, 331
(1974).

W. B. Bridges et al., "Coherent Optical Adaptive

Techniques (COAT)," Technical Report No. 2, Contract
No. F30602-73-C=0248, 1973,

R, J. Roark, Formulas for Stress and Strain (McGraw- .
Hill, New York, 1968).

W. P. Brown, J. Opt. Soc. Am. 61, 1051 (1971).
56,

D. L, Fried, J. Opt. Soc. Am. 56

1372 (1966).

Precading page blank

85




oL i g e

B

APPENDIX A
RECIPROCITY CONS1DERATIONS

The eguivalence of the transmitting and receiving
patterns of an antenna is a consequence of a deneral reci-
procity relation satisfied by the solution of the Maxwell
equations, For the propagation problems of concern in thias
report, the solution of the Maxwell equationa can bhe derived
from the solution of a reduced wave equation, The desired
reciprocity relation is obtained by conasidering the case where
there is a delta source located at one of two points x;

(1 = 1,2) within a volume V bounded by 4 surface 8§

vE e k® nf| w0 = osix - xp (A1)
We assume that the refractive indoex distribution within v

and the boundary conditions on S§ are independent of the location
of tha source, If we multiply the equation for ul(ﬁ) by u2(§)
and that for u,(x) by u,(x), subtract the results, and inte-
yrate over V, we obtain

{ <;u1 «uz
l ds Uy —or = Uy === U, (X)) - Uy (%, (A 2)

The surface integral is obtained by applying Greuen's theorem
te tho volume integral of Uy 7' up o=y v u,.

For a wide range of problems, including those of
interaat in thias report, we can approximate the boundary

conditions on 8 by the impedance boundary condition

(hh ' 4) upo= 0, X on 8 (A.3)

where o is a constant that depends on the surface impedance
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of the boundary. Hence, the surface integral in Eq. (A.2)
is zero and we obtain the following reciprocity relation

uy (%5) = Uy (x,) (A.4)

This relation states that the field produced at x, by a source
at x, is the same ap the field produced at Xy by a source at
Xq. We note that the derivation of Eq. (A.4) d4id not require
any assumptions regarding the nature of the refractive index
functior n(x) in Eq. (A.1l). Hence, the reciprocity relation
we have derived is valid regardless of the state of homo~-
geneity of the medium between 8, and x,.

To prove the eqguivalence of the transmitting and
recelving patterns of an antenna immersed in an inhomogeneous
medium, we need now merely consider the situation shown in
Fig. A.l., The antenna is depicted here as a lens. According
to the reciprocity relation given in Eg. (A.4), the field
radiated to the point x, from a point source at %, behind the
lens is equal to the field received at x, from a point source
at X,. This implies that the transmi. 'ng and receiving
patterns of the lens are the same because, as shown in Fig.
A.1, the field at X, in the receiving case bears the same
geometrical relationship to the center of the receiving
pattern (indicated by the dashed lines in Fig., A.1l), as does
the ficld at x, to the center of the transmitted pattern
(indicated by the double-dashed line in Fig. A.1l).

AB a corollary to the equivalence between the trans-
mitting and receiving patterns of an antenna, we note that if
one images a point source located at LY the point of maximum
irradiance in the image plane ils the ideal place to locate
a point source if it is desired to deliver maximum power to
X, on transmit. To prove this, we recall from Eq. (A, 4)
thot the field at x, radiated by a source at X, is the same
as that which occurs when the source and observation points
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Fig. A,l. Antenna pattern reciprocity.
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are interchanged. Hence, the fact that we locate the point

source at the point of maximum irradiance from the source at

X, implies that the field radiated to x, will be maximized

because the transmitting and receiving patterns of the

antenna are equivalent and a point source located at the

maximum of one pattern will likewise produce at maximum at

the recilprocal point. Basically, we are saying that maximum

power is delivered to Xy when the transmitter ig pointed at the

apparent position of X, This result has wide application in

communication and radar syatems where it is often necessary

to deliver energy to a point specified by an imaging system.
In addition to the equivalence butween the transmitting

and recciving patterns of an antenna and the pointing corol-

lary discussed above, the reciprocity relation given in Eq.

i ({A.4) has the obvious consequence that the fluctuations of a

j spherical wave propagating in a randdm medium are reciprocal

regardless of whether the random inhomugeneities are spatially

homogeneous, By reciprocal wc mean that the fluctuations at

a point Xy in the field radiated from a spherical wave source

at a point x, are the same as those observed at X, when the

spherical wource is at x,. This means, for instance, that

earthbound measurements of the fluctuations of a spherical wave

=TT TR TR YT RITIR TR TR A T R ANT TR TR e e r T e e e e

emanating from a point source outdide the varth's atmosphere J
can be used to prediet the fluctuations that would occur §n
the reciprocal situstion; namely, an carthbouand point source ]
radiating to the same point in space.
Unfortunately, the raeciprocal relation between the
fluctuations of the spherical wave fields in random media
yenerally does not apply to the fluctuations of fields radiated
by more complicated sourcve. For oxample, consider the source=-
medium configuration shown in Figs, A.ca and b, The source

in this figurce is composed of a point source, lens combination,
which is8 generically equivalent to mosat lamer source. With
this type of source we change the location of the lens when
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the source and observation points are interchanged. 1In
effect, this means that the refractive index function n(x)

in Eq. (A.l) is not the same when the "source" is at x,,

as it is when the "source" is at Xy- Consequently, the terms
involving the refractive index do not completely cancel when
we follow the procedure cutlined earlier for the derivation
of the reciprocity relation., given in Eq. (A.4). There is an
additional term in Egs. (A.2) and (A.4) that destruys the
simple reciprocal relationship that exists for point source
fields.
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